Calculation policy

Year 5 and 6

Objectives

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary

Addition
add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, „carry", expanded, compact, vertical, thousands, hundreds, digits, inverse \& decimal places, decimal point, tenths, hundredths, thousandths

Subtraction

equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key Skills

Addition

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies ie. add the nearest multiple of 10, 100, 100 and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds.
- Use rounding to check answers and accuracy.
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000.
- Add numbers with more than 4 digits using formal written method of columnar addition.

Subtraction

- Subtract numbers mentally with increasingly large numbers .
- Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy
- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.
- Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through 0.
- Round any number up to 1 million to the nearest 10, 100, 1000, 10000 and 100000.

Year 5

Year 5: Addition

Year 5: Addition			
	Concrete	Pictorial	Abstract
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show $15,735+4,012$.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges.
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m 	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different. $\begin{array}{r} \mathrm{O} \cdot \text { Tth Hth } \\ \hline 5 \cdot 0 \\ +1 \cdot 2 \\ +1 \cdot 2 \\ \hline 6 \cdot 2 \\ \hline \end{array}$	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \text { } \\ +0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot q \\ +\begin{array}{c} 0 \\ 0 \cdot 3 \end{array} \\ \hline 1 \cdot 2 \\ \hline 1 \end{array}$ Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65=? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \\ +0 \cdot 6 \\ \hline \end{array} \end{aligned}$

Year 5: Subtraction			
	Concrete	Pictorial	Abstract
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$ \square	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 0 $\begin{array}{ccccc} \text { TTh Th } & H & \text { T } & 0 \\ \hline 1 & 5 & 7 & 3 & 5 \\ & 2 & 5 & 8 & 2 \\ \hline \end{array}$$\square$ Now subtract the 10 s . Exchange I hundred for 10 tens. $\begin{array}{rrrrr} \text { TTh Th } & \mathrm{H} & \text { T } & \mathrm{O} \\ \hline 1 & 5 & { }^{6} & & 3 \\ \hline \end{array}$ \qquad Subtract the $100 \mathrm{~s}, \mathrm{I}, 000$ s and $10,000 \mathrm{~s}$.TTh Th H T 0 $0 \varnothing \varnothing$ $\varnothing \varnothing \varnothing \varnothing$ O 0 $\varnothing \varnothing \varnothing \varnothing \varnothing$ $$	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction.

Objectives

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon
known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 recognise and use square numbers and cube numbers, and the notation for squared ${ }^{(2)}$ and cubed (3)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction multiplication and division and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates.

Key Skills

Multiplication

- Identify multiples and factors, using knowledge of multiplication tables to 12x12.
- Solve problems where larger numbers are decomposed into their factors
- Multiply and divide integers and decimals by 10, 100 and 1000
- Recognise and use square and cube numbers and their notation
- Solve problems involving combinations of operations, choosing and using calculations and methods appropriately

Division

- Recall multiplication and division facts for all numbers up to 12×12 (as in Y4)
- Multiply and divide numbers mentally, drawing upon known facts
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors
- Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- Work out whether a number up to 100 is prime, and recall prime numbers to 19
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use multiplication and division as inverses
- Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=$ 24 r $2=241 / 2=24.5 \approx 25$)
- Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates

Vocabulary

Multiplication

groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, _times as big as, once, twice, three times..., partition, grid method, carry' , total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication,

Division
share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)

Year 5: Multiplication			
	Concrete	Pictorial	Abstract
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10,100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . UIIIIIIII	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000 . $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Multiplying decimals by $\mathbf{1 0 , 1 0 0}$ and $\mathbf{1 , 0 0 0}$
Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.

Year 5: Division			
	Concrete	Pictorial	Abstract
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. -0.0.0.0.00 00000008 $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=\square$ $12 \div \square=$ $\times 3=12$ $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

| Understanding
 the
 relationship
 between
 fractions and
 division | Use sharing to explore the link between
 fractions and division.
 Each person receives one-third. | Use a bar model and other fraction
 representations to show the link between
 fractions and division. | Use the link between division and fractions to
 calculate divisions. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Year 6 Addition and Subtraction	
Objectives	Key Skills
- perform mental calculations, including with mixed operations and large numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Addition - Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies. - Solve multi-step problems in context, deciding which operations and methods to use and why. - Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. - Read, write, order and compare numbers up to 10 million and determine the value of each digit. - Round any whole number to a required degree of accuracy. - Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.
Vocabulary	
Addition add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, „carry", expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths Subtraction equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal	Subtraction - Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why. - Read, write, order and compare numbers up to 10 million and determine the value of each digit - Round any whole number to a required degree of accuracy - Use negative numbers in context, and calculate intervals across zero. - Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

Year 6

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is 2,911,301. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems.$257,000+99,000=?$$£ 257,000$ $£ 100,000$ I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$

Year 6:Subtraction				
	Concrete Use counters on a place value grid to represent subtractions of larger numbers.		Pictorial	Abstract
Comparing and selecting efficient methods	Use c repres	ters on a place value grid to subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison. \square puzzle book	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers			Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 950 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10. $10,000-500=?$

Objectives

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Vocabulary

Multiplication

groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, „carry", tenths, hundredths, decima
Division
share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, „carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (nonprime), common factor

Year 6: Multiplication			
	Concrete	Pictorial	Abstract
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 $12,000+800+80+20=12,900$
Multiplying up to a 4-digit number by a 2-digit number		Use a grid method alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages.

Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10,100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000. $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$

Year 6: Division			
	Concrete	Pictorial	Abstract
Understanding factors	Use equipment to explore different factors of a number. 4 is a factor of 24 but is not a factor of 30 .	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Dividing by a single digit	Use equipment to make groups from a total. -०००००००००००० -•••••••••••• -0000000000 -००७००००००००७ There are 78 in total. There are 6 groups of 13 . There are 13 groups of 6 .		Use short division to divide by a single digit. Use an area model to link multiplication and division. $6 \times ?=132$ $$ $132=120+12$ $132 \div 6=20+2=22$

Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an grid method alongside written division to model the process. $377 \div 13=?$ 13 \square \square 13 13 $377 \div 13=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ $1 3 \longdiv { 3 \quad 7 \quad 7 }$ $-\begin{array}{r}130 \\ \hline 247\end{array}$ 10 $-$1 3 0 1 10 $-1 \quad 7 \quad \frac{9}{29}$ $377 \div 13=29$ A slightly different layout may be used, with the division completed above rather than at the side. 3 2179 -63 168 Divisions with a remainder explored in problem-solving contexts.

Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \square \square \square $12 \div 10=1.2$ $1.2 \div 2=0.6$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50=$ \square $40 \rightarrow \div \div 5 \rightarrow+10 \rightarrow ?$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0 \cdot 8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places. $\begin{array}{r\|r} 8 & 4 \cdot 24 \\ 8 & 0 \cdot \\ 8 & 4 \cdot{ }^{4} 24 \\ 0 \cdot 5 \\ 8 & 4 \cdot{ }^{4} 2{ }^{2} 4 \\ 8 & 0 \cdot 5 \quad 3 \\ 8 \cdot{ }^{4} 2{ }^{2} 4 \\ 8 \end{array}$

